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Andréa Prokopczyke
Existence of solutions for the aggregation equations with initial data in Morrey spaces 17

Anne Bronzi
On the Convergence of Statistical Solutions of Evolution Equations . . . . . . . . . . 18
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Location
The congress will take place in FINATEC at the University of Braśılia. Also, the participant may
want to know the departament of mathematics of the University of Braśılia. Both places are indicated
in blue in the map on page 4.

Useful Phone Numbers
In case of any health emergencies call 192 (SAMU).
Police number: 190.
Math department of the University of Braśılia: (61) 3107 7236
Security of the University of Braśılia: (61) 3107 6222

Meals and refreshments
There is a university restaurant indicated in the map of page 4 that serves breakfast (7:00hs - 9:00hs),
lunch (11:00hs - 14:30hs) and dinner (17:00hs - 19:30hs). There are several restaurants nearby the
in Asa Norte. We will present you a few options:
1. Feitio Mineiro located at 306 Norte, bloco B - lojas 45/51, Asa Norte (lunch and dinner).
2. Restaurante e Bar Xique Xique located at 708 Norte Bloco E Loja 45, Asa Norte (lunch and
dinner).
3. Subway/Spoleto at the University of Braśılia, indicated in the map of page 4, number 41 (lunch
and dinner).
4. Domino’s Pizza located at 109 Norte Bloco B, Loja 1, Asa Norte (Dinner).
5. Crepe au Chocolat located at 109 Norte, Bloco C, Loja 5, Asa Norte (Launch and Dinner).
6. Restaurante El Negro located at 413 Norte Bloco C, Loja 21, Asa Norte.
There is also a supermarket (Pão de Açucar) at 404/405 Norte, Bloco A, Asa Norte opened from
7:00hs to 22:00hs.
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Controllability of evolution PDEs by spectral methods

Alberto Mercado Saucedo (alberto.mercado@usm.cl)
Departament of Mathematics
Universidad Técnica Federico Santa Maŕıa
Valparáıso, Chile.

Abstract

In this talk we will introduce the moment method for controllability of PDEs, which is based
on the properties of exponential functions related with the eigenvalues of the involved equations.
We will present some recent results, obtained using this method, for Kuramoto Sivashinsky (KS)
system, a parabolic fourth order partial differential equation, and other ongoing and related
problems.

References

[1] Cerpa, E., Guzmn, P., Mercado, A. On the control of the linear Kuramoto-Sivashinsky equation.
ESAIM Control Optim. Calc. Var. 23 (2017), no. 1, 165-194.
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Approximate controllability via properties on resolvent
operators

Aldo Pereira (apereira@utalca.cl)
Instituto de Matemática y F́ısica
Universidad de Talca
Talca, Chile
Partially supported by Fondecyt GRANT #1130619

Abstract

This talk treats the approximate controllability of fractional differential systems of Sobolev
type in Banach spaces. We first characterize the properties on the norm continuity and compact-
ness of some resolvent operators (also called solution operators). And then, via the obtained
properties on resolvent operators and fixed point technique, we give some approximate con-
trollability results for Sobolev type fractional differential systems in the Caputo and Riemann-
Liouville fractional derivatives with order 1 < α < 2, respectively. This, in contrast to the
development in [2] and [3], follows in part the idea of [1] to suppose certain properties on the
resolvent operators to obtain approximate controllability, namely, the norm continuity and com-
pactness. Particularly, the existence or compactness of an operator E−1 is not necessary in our
results.

References

[1] Z. Fan. Approximate controllability of fractional differential equations via resolvent operators.
Adv. Diff. Equat. 2014 (2014), no. 54, 11 pp.

[2] H. Qin, Z. Zuo, J. Liu, L. Liu. Approximate controllability and optimal controls of fractional
dynamical systems of order 1 < q < 2 in Banach spaces.. Adv. Difference Equ. 2015 (2015), no.
73, 17 pp.

[3] R. Sakthivel, R. Ganesh, Y. Ren, S. Anthoni. Approximate controllability of nonlinear fractional
dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 18 (2013), no. 12, 34983508.
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Non-Autonomous Morse-Smale Dynamical Systems: Struc-
tural Stability under Non-Autonomous Perturbations

Alexandre Nolasco de Carvalho (andcarva@icmc.usp.br)
Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo
São Carlos-SP, Brazil

Abstract

In this lecture we present our recent results on structural stability of gradient Morse-Smale
Dynamical Systems under non-autonomous perturbations. To that end we introduce the notion
of lifted invariant sets and give a characterization of the uniform attractor in terms of dynamical
structures of a family of pullback attractors. This is a joint work with G. Raugel (Paris XI), J.
Langa (U. Sevilla) and M. Bortolan (UFSC-Brazil).
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Navier-Stokes equations: the one million dollar problem
from the point of view of continuation of solutions

Alexandre do Nascimento O. Sousa (alexandrenosousa@gmail.com)
Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo
São Carlos-SP, Brazil
Partially supported by CAPES

Abstract

We consider the Navier-Stokes problem on RN

ut = ∆u−∇π + f(t)− (u · ∇)u, x ∈ Ω
div(u) = 0, x ∈ Ω
u = 0, x ∈ ∂Ω
u(0, x) = u0(x),

(1)

where u0 ∈ LN (Ω)N and Ω is an open, bounded and smooth subset of RN . We prove that the
above problem is locally well posed and give conditions to obtain that these solutions exist for
all t ≥ 0. We used techniques of semilinear parabolic equations considering nonlinearities with
critical grouth developed in [1].

This work is based on my master’s degree dissertation, and is not recent work, however we
present a new interpretation for the problem above.

References

[1] Arrieta, J. and Carvalho, A. N., Abstract Parabolic Problems with Critical Nonlinearities and
Applications to Navier-Stokes and Heat Equations. Transactions of the American Mathematical
Society, 352 285-310 (2000).
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Existence of solutions for the aggregation equations with ini-
tial data in Morrey spaces

Andréa C. Prokopczyk (andreacp@ibilce.unesp.br)
Departament of Mathematics, São Paulo State University - São José do Rio Preto, Brazil.

Juliana C. Precioso (precioso@ibilce.unesp.br)
Department of Mathematics, São Paulo State University - São José do Rio Preto, Brazil.

Marta L. Suleiman (suleiman@hotmail.com)
Department of Mathematics, São Paulo State University - São José do Rio Preto, Brazil.

Partially supported by CAPES

Abstract

In this work we consider a class of nonlinear viscous transport equations describing aggre-
gation phenomena in biology, which can be written in the form

ut = ∆u−∇ · (u(∇K ∗ u)), x ∈ Rn, t > 0, (2)

u(x, 0) = u0(x), x ∈ Rn, (3)

where the unknown variable u = u(x, t) ≥ 0 represents either the population density of a species
or the density of particles in a granular media, n ≥ 2, the Kernel ∇K ∈ L1(Rn) and the symbol
“∗” denotes the convolution with respect to the variable x.

When the initial data u0 belongs to a Morrey space, for suitable indices, we show the
existence of a global mild solution to (2)-(3). We also analyze the asymptotic stability of
solutions persistence at large times.

References

[1] T. Kato. Strong solutions of the Navier-Stokes equations in Morrey spaces . Bol. Sol. Bras. Mat.,
22, 2: 127-155, 1992.

[2] H. Kozono and Y. Sugiyama. Local existence and finite blow-up of solutions in the 2-D Keller-
Segel system. J. Evol. Equ., 8: 353-378, 2008.

[3] D. Li and X. Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete Cont.
Dyn. Syst., 27: 301-323, 2010.
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On the Convergence of Statistical Solutions
of Evolution Equations

Anne Bronzi (annebronzi@ime.unicamp.br)
Universidade Estadual de Campinas, Brazil

Abstract

In this talk we will present an abstract framework for the theory of statistical solutions
for general evolution equations. This theory extends the notion of statistical solutions initially
developed for the 3D incompressible Navier-Stokes equations to other evolution equations that
have global solutions which are not known to be unique. We will prove the convergence of
statistical solutions of regularized evolution equations to statistical solutions of the original
one. The applicability of the theory will be illustrated with the 2D inviscid limit, that is, the
convergence of statistical solutions of the 2D Navier-Stokes to the statistical solutions of the 2D
Euler equations. This is a joint work with Cecilia Mondaini (Texas A & M) and Ricardo Rosa
(UFRJ).
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Discrete Bessel functions and partial difference equations

Antońın Slav́ık (slavik@karlin.mff.cuni.cz)
Faculty of Mathematics and Physics
Charles University
Prague, Czech Republic

Abstract

M. Bohner and T. Cuchta have recently proposed a new definition of the discrete Bessel
function [1], which is different from the discrete Bessel functions studied in earlier papers. It
shares many properties with the classical Bessel function, e.g., it satisfies a difference equation
which is a discrete analogue of the Bessel differential equation.

Inspired by this work, we introduce a new class of discrete Bessel functions and discrete
modified Bessel functions denoted by J cn and Icn [2]. These functions are the discrete analogues
of the functions t 7→ Jn(ct) and t 7→ In(ct), where In and Jn stand for the classical Bessel
function and modified Bessel function. If c = 1, then J cn reduces to the discrete Bessel function
from [1].

Our motivation comes from the theory of lattice differential equations, i.e., equations with
discrete space and continuous time. The fundamental solutions of the semidiscrete wave equation
have the form u1(x, t) = J2x(2ct) and u2(x, t) =

´ t
0 J2x(2cs) ds, where x ∈ Z and t ≥ 0. The

fundamental solution of the semidiscrete diffusion equation has the form u(x, t) = e−2ctIx(2ct).
Using the new functions J cn and Icn, we obtain similar formulas for the fundamental solutions

of the purely discrete wave equation and diffusion equation. Formulas for fundamental solutions
of these partial difference equations are already available in the existing literature, but in a
different form. Expressing them in terms of the discrete Bessel functions can simplify the study
of their properties, such as the oscillatory behavior.

References

[1] M. Bohner, T. Cuchta, The Bessel difference equation, Proc. Amer. Math. Soc. 145 (2017),
1567–1580.

[2] A. Slav́ık, Discrete Bessel functions and partial difference equations, submitted.
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Lebesgue regularity for discrete time nonlocal equations

Carlos Lizama (carlos.lizama@usach.cl)
Department of Mathematics and Computer Science
Universidad de Santiago de Chile - Chile
Partially funded by FONDECYT 1140258 and and CONICYT - PIA - Anillo ACT1416

Abstract

In this talk, we will present a new method based on operator-valued Fourier multipliers to
characterize the existence and uniqueness of `p-solutions for discrete time fractional models in
the form

∆αu(n, x) = Au(n, x) +
k∑
j=1

βju(n− τj , x) + f(n, u(n, x)), n ∈ Z, x ∈ Ω ⊂ RN ,

where βj ∈ R, τj ∈ Z, A is a closed linear operator defined on a Banach space X and ∆α

denotes the Grünwald-Letnikov fractional difference of order α > 0. If X is a UMD space, we
provide this characterization only in terms of the R-boundedness of the operator-valued symbol
associated to the abstract model.

References

[1] Agarwal, Ravi; Cuevas, Claudio; Lizama, Carlos, Regularity of Difference Equations
on Banach Spaces, Springer, Cham, 2014.

[2] Lizama, Carlos; Murillo-Arcila, Marina, Maximal regularity in lp spaces for discrete
time fractional shifted equations, J. Differential Equations. 263 (6) (2017), 3175–3196.

[3] Lizama, Carlos, `p-maximal regularity for fractional difference equations on UMD spaces,
Math. Nach., 288 (17/18) (2015), 2079–2092.
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Existence and uniqueness of solutions for abstract differen-
tial equations with state dependent delay

Eduardo Hernndez M (lalohm@ffclrp.usp.br)
Departamento de Computao e Matemtica,
Faculdade de Filosofia Cincias e Letras de Ribeiro Preto,
Universidade de So Paulo, So Paulo, Brazil
Partially supported by Fapesp, Grand 2017/13145-8

Abstract

We present some results on the existence and uniqueness of mild and strict solutions for a
general class of differential equations with state dependent delay of the form

u′(t) = Au(t) + F (t, uσ(t,ut)), t ∈ [0, a], (4)

u0 = ϕ ∈ BX = C([−p, 0];X), (5)

where A : D(A) ⊂ X → X is the generator of an analytic semigroup of bounded linear operators
(T (t))t≥0 defined on a Banach space (X, ‖ · ‖) and F (·), σ(·) are suitable continuous functions.

References

[1] Eduardo Hernandez, Michelle Pierri, Jianhong Wu. C1+α-strict solutions and wellposedness of
abstract differential equations with state dependent delay. J. Differential Equations 261, (2016)
12, 6856-6882.

[2] Eduardo Hernandez, Jianhong Wu. Existence, uniqueness and qualitative properties of global
solutions of abstract differential equations with state dependent delay. Submitted.
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Dichotomies for generalized ordinary differential equations

Everaldo de Mello Bonotto (ebonotto@icmc.usp.br)
Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo
São Carlos-SP, Brazil
Partially supported by FAPESP grant 2016/24711-1 and CNPq grant 310497/2016-7

Abstract

This talk is concerned with the theory of dichotomies for generalized ordinary differential
equations. We study conditions for the existence of exponential dichotomies and bounded solu-
tions. Using the correspondences between generalized ordinary differential equations and other
equations, we translate our results to measure differential equations and impulsive differential
equations. The fact that we work in the framework of generalized ordinary differential equations
allows us to manage functions with many discontinuities and of unbounded variation.

References

[1] E. M. Bonotto, M. Federson and F. L. Santos, Dichotomies for generalized ordinary differential
equations and applications. Submitted.

[2] W. A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics, Springer-Verlag,
Berlin Heidelberg New York, 1978.

[3] Š. Schwabik, Generalized Ordinary Differential Equations, World Scientific, Singapore, Series in
real Anal., vol. 5, 1992.
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Pullback dynamic in some nonautonomous equations with
delay

Felipe Rivero (rivero@id.uff.br)
Departamento de Análise, Instituto de Matemática e Estat́ıstica
Universidade Federal Fluminense, Niterói (RJ), Brazil

Tomás Caraballo (carab@us.es)
Departmento de Ecuaciones Diferenciales y Análisis Numérico
Universidad de Sevilla, Spain

Miguel A. Márquez-Durán (ammadu@upo.es)
Departamento de Econoḿıa, Métodos Cuantitativos e Historia Económica
Universidad Pablo de Olavide, Sevilla, Spain

Abstract

In this talk we are going to show the well-posedness of the following non-classical and non-
autonomous diffusion equation

∂u

∂t
− γ(t)∆

∂u

∂t
−∆u = g(u) + f(t, ut) in (s,+∞)× Ω,

u = 0 on (s,+∞)× ∂Ω

u(t, x) = φ(t− s, x), t ∈ [s− h, s], x ∈ Ω

(6)

where the term f(t, ut) denote different kinds of delay. We also study the pullback dynamic of
the problem showing the existence of the pullback attractor inside de framework of the evolution
processes, assuming some grow conditions for the non-linear term g(u).

References

[1] T. Caraballo, M.A. Márquez-Durán, F. Rivero Well-Posedness and Asymptotic Behavior of a
Nonclassical Nonautonomous Diffusion Equation with Delay. Int. Journal of Bifurcation and
Chaos, Vol. 25, No. 14 (2015) 1540021 (11 pages).

[2] T. Caraballo, M.A. Márquez-Durán, F. Rivero A Nonclassical and Nonautonomous Diffusion
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Controllability and Observability for Linear Systems in
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Abstract

It is known that generalized ordinary differential equations (we write generalized ODEs
for short), defined by J. Kurzweil, encompass other types of equations such as ordinary and
functional differential equations, measure and impulsive differential equations and dynamic
equations on time scales. The aim of this paper is to establish results on controllability and
observability for a system of linear generalized ODEs defined in a Banach space with initial
data, controls and observations also belonging to a Banach space. Necessary and sufficient
conditions are obtained. The fact that we work in the framework of generalized ODEs allows us
to obtain results for the particular cases where the functions involved can be highly oscillating
and have many discontinuities. We apply our results to impulsive differential equation and we
point out that similar results are valid for measure differential equations. An example is given
to illustrate the results.

References

[1] F. A. Silva, M. Federson, Controllability and Observability for Linear Systems in Banach Spaces
using Generalized Ordinary Diffenrential Equations, (2017). Preprint.

24



XI Congress GAFEVOL

Averaging Principle for Neutral Differential Equations
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Abstract

The averaging principle is powerful tool in the study of differential equations with some kind
of pertubation. However, with respect to the neutral functional differential equations (NFDE)
the literature is not very extensive and there are no many results in this way. Here, the purpose
is to investigate conditions to establish an averaging principle for these equations based on some
ideas of [1],[2].
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Existence of asymptotically periodic solutions of partial func-
tional differential equations with state-dependent delay
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Abstract

The aim of this work is to establish results about the existence of mild solutions, and
the existence of S-asymptotically periodic and asymptotically periodic solutions for systems
described by partial or abstract retarded functional differential equations with infinite delay
when the delay depends on the state of the system (abbreviated, state-dependent delay) using
Lipschitz conditions on the functions involved in the equation. Specifically, in this work we study
the existence of asymptotically periodic solutions for a class of abstract retarded functional
differential equations (abbreviated, ARFDE) with state-dependent delay described by

x′(t) = Ax(t) + f(t, xρ(t,xt)), t ∈ I, (7)

x0 = ϕ, (8)

where X is a Banach space, x(t) ∈ X, A is the infinitesimal generator of a strongly continuous
semigroup of bounded linear operators (T (t))t≥0 defined on X and f, ρ are functions. In this
context, along this work we assume that f : I × B → X is a function such that f(t, ·) is
continuous for all t ≥ 0, ρ : I × B → R is continuous, where B is the phase space, and f and ρ
satisfy additional conditions which will be specified later.
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Non-isothermal model for two viscous incompressible fluids
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Abstract

This talk is concerned with a non-isothermal diffuse-interface model which describes the
motion of a mixture of two viscous incompressible fluids. The fluids are assumed to have
matched densities and the same viscosity and thermal conductivity. The model consists of
modified Navier-Stokes equations coupled with a phase-field equation given by a convective
Allen-Cahn equation, and energy transport equation for the temperature. This model is based
on an energetic variational formulation. It is investigated the well-posedness of the problem
in the two and three dimensional case without any restriction on the size of the initial data.
Moreover, regular and singular potentials for the phase-field equation are considered.
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A delay differential equation with a solution
whose shortened segments are dense
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Abstract

We construct a delay functional d : Y → (0, r) with r > 1, Y ⊂ C1
r = C1([−r, 0],R), and

dim Y =∞ so that the equation

x′(t) = −αx(t− d(xt))

has a solution whose short segments xt|[ − 1, 0] are dense in C1
1 . This implies complicated

behaviour of the trajectory t 7→ xt ∈ C1
r .
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Hernán R. Henŕıquez (hernan.henriquez@usach.cl)
Departament of Mathematics
University of Santiago
Santiago, Chile
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Abstract

In this work we are concerned with the controllability of time-varying lumped control systems
governed by a nonlinear differential equation. Assuming the underlying linear system is con-
trollable, and the nonlinear forcing function satisfies a boundedness condition which is adapted
to the underlying linear system, we show the nonlinear system is approximately controllable.
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[1] Hernán R. Henŕıquez and Matthieu F. Pinaud, Controllability of nonlinear systems, Pre-print,
2017.

30



XI Congress GAFEVOL

On a homogeneous equation related to the KdV equation

Igor Leite Freire (igor.freire@ufabc.edu.br)
Centro de Matemtica, Computao e Cognio
Universidade Federal do ABC
Santo Andr, Brazil
Partially supported by CNPq

Abstract

In this talk we discuss some properties of the family of equations

ut + 2a
uxuxx
u

= εauxxx, (x, t) ∈ R× [0,∞),

where a and ε are arbitrary real parameters. This family of equations was introduced a couple
of years ago in the reference [1] where several questions about it were put by the authors, such
as: is it somehow related to the KdV equation? Does it have a hierarchy of infinitely many
symmetries or conservation laws?

In this talk we shall present positive answers to the questions formulated in [1].
This is a joint work with Dr. P. L. da Silva and Dr. J. C. S. Sampaio.
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Abstract

We are interested in studying the existence of Lp-bounded solutions to the Cauchy problem{
utt + 2ηA

1
2ut + Au = f(t, u, ut), t > 0,

u(0) = u0 ∈ X
1
2 , ut(0) = v0 ∈ X,

where η > 0, X is a reflexive Banach space, A : D(A) ⊆ X → X is a closed densely defined

operator, X
1
2 is the fractional power space associated with A as in [5] and f : R+×X

1
2 ×X → X

is a function given.
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Unbounded Attractors Under Perturbations
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Abstract

We put forward the recently introduced notion of unbounded attractors. These objects will
be addressed in the context of a class of 1-D semilinear parabolic equations. The nonlinearities
are assumed to be non-dissipative and, in addition, defined in such a way that the equation
possesses unbounded solutions as time goes to infinity. Small autonomous and non-autonomous
perturbations of these equations will be treated.
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Existence and uniqueness of solution for abstract differential
equations with state dependent delay at the impulses
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Abstract

We study the existence and uniqueness of mild solutions for a general class of abstract

impulsive differential equations with state dependent delay at the impulses.

In this paper we study the existence and uniqueness of mild solutions for a class of abstract
impulsive differential equations of the form

u′(t) = Au(t) + f(t, u(ζ(t, u(t)))), t ∈ Ii = (ti, ti+1], i = 0, . . . , N, (9)

u(t+j ) = gj(u(σj(u(t+j )))), j = 1, . . . , N, (10)

u0 = ϕ ∈ B = C(I−1;X), I−1 = [−p, 0], (11)

where A : D(A) ⊂ X → X is the generator of an analytic semigroup of bounded linear operators
(T (t))t≥0 on a Banach space (X, ‖ · ‖) 0 = t0 < t1 < t2 < . . . < tN < tN+1 = a are pre-fixed numbers
and gi : X → X, f : [0, a]×X → X, ζ : [0, a]×X → R, σi : X → [0, a], i = 1, . . . , N, are functions
that will be specified.

Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be Banach spaces. We denote by L(Z,W ) the space of bounded
linear operators from Z into W endowed with operator norm denoted by ‖ · ‖L(Z,W ). We write L(Z)
and ‖ · ‖L(Z) if Z = W . In addition, Br(z, Z) = {y ∈ Z :‖ y − z ‖Z≤ r}.

Let J ⊂ R be a bounded interval. The spaces C(J, Z) and CLip(J, Z) are the usual and their norms
are denoted by ‖ · ‖C(J,Z) and ‖ · ‖CLip(J,Z). We remark that ‖ · ‖CLip(J ;Z)=‖ · ‖C(J ;Z) +[ · ]CLip(J;Z)

where [ζ]CLip(J ;Z) = supt,s∈J,t6=s
‖ζ(s)−ζ(t)‖Z
|t−s| .

The notation PC(X) is used for the space formed by all functions u : [0, a] → X such that u(·)
is continuous at t 6= ti, u(t−i ) = u(ti) and u(t+i ) exists for all i = 1, · · · , n. This space is provided
with the norm ‖ u ‖PC(X)= maxi=0,1,...,N ‖ u ‖C((ti,ti+1];X). The notation PCLip(X) is used for the
space of the functions u ∈ PC(X) such that u|(ti,ti+1]

∈ CLip((ti, ti+1];X) for all i = 0, 1, . . . N ,

endowed with the norm ‖ u ‖PCLip(X)= maxi=0,...,N ‖ u|(ti,ti+1]
‖CLip((ti,ti+1];X). In addition, we use the

notation BPC(X) (resp. BPCLip(X)) for the set of functions u : [−p, a]→ X such that u0 ∈ B (resp.
u0 ∈ CLip([−p, 0];X)) and u|[0,a] ∈ PC(X) (resp. u|[0,a] ∈ PCLip(X)).

We introduce the following concept of mild solution.

Definition 1 A function u ∈ BPC(X) is called a mild solution of the problem (17)-(18) if u0 = ϕ,

u(t+i ) = gi(u(σi(u(t+i )))) for all i = 1, . . . , N and

u(t) = T (t)ϕ(0) +

ˆ t

0

T (t− τ)f(τ, u(ζ(τ, u(τ))))dτ, t ∈ [0, t1],

u(t) = T (t− ti)gi(u(σi(u(t+i )))) +

ˆ t

ti

T (t− τ)f(τ, u(ζ(τ, u(τ))))dτ, t ∈ (ti, ti+1].

To prove our result, we introduce the next conditions.
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HZ,ζ,σi (Z, ‖ · ‖Z) is a Banach space, ζ ∈ CLip([0, a] × Z; [−p, a]), σi ∈ C(Z, [−p, a]) for all i ∈
{1, . . . , N}, σi(x) 6= tj for all i, j ∈ {1, . . . , N} and there is a function j : {1, . . . , N} →
{0, 1, . . . , N} such that ζ ∈ CLip(Ii × Z; Ij(i)) and j(i) ≤ i for all i ∈ {1, . . . , N}. Next, for
convenience, we write simply [ζ]CLip and [σi]CLip in place [ζ]CLip([0,a]×V ;[−p,a]) and [σi]CLip(V ;[−p,a]).

HW
g,Z (W, ‖ · ‖W ), (Z, ‖ · ‖Z) are Banach spaces, (W, ‖ · ‖W ) ↪→ (Z, ‖ · ‖Z) ↪→ (X, ‖ · ‖), AT (·) ∈

L∞([0, a];L(W,Z)), gi ∈ CLip(Z;W ) and gi(·) is bounded for all i ∈ {1, . . . , N}. Next, LZ,W (gi)
is the Lipschitz constant of gi(·), CZ,W (gi) =‖ gi ‖C(Z;W ), LZ,W (g) = maxi= ...,N LZ,W (gi) and
CZ,W (g) = maxi= ...,N CZ,W (gi).

HV
f ,Z (Z, ‖ · ‖Z), (V, ‖ · ‖V ) are Banach spaces continuously included in (X, ‖ · ‖), f ∈ CLip([0, a] ×

Z;V ) and f(·) is bounded. Next, LZ,V (f) denotes the Lipschitz constant of f(·) and CZ,V (f) =‖
f ‖C([0,a]×Z;V ).

Notations 1 Next, for convenience, b = max{ti+1 − ti : i = 1, . . . , N} and bi = ti+1 − ti for all

i = 1, . . . , N . If the conditions HZ,ζ,σi , HW
g,Z and HV

f ,Z are satisfied and T (·)ϕ(0) ∈ CLip([0, a];V ), we

use the notations

ΦZ,W,V =‖ T (·) ‖L∞(([0,b];L(Z,W )) CZ,W (g)+ ‖ T (·) ‖L∞([0,b];L(Z,V )) CZ,V (f) + ΘZ,VLZ,V (f)

+ [T (·)ϕ(0)]CLip([−p,0];Z) + [ϕ]CLip([−p,0];Z),

ΘZ,V =‖ T (·) ‖L1([0,b],L(Z,V )), ΛZ,W =‖ T (·) ‖L∞([0,b]L(Z,W )) .

The main result on the existence of solution for the problem (17)-(18) is given by the following
Theorem.

Theorem 1 Assume that the conditions HX,ζ,σi, HW
g,X and HX

f ,X are satisfied, T (·)ϕ(0) ∈ CLip([0, a];X),

ϕ ∈ CLip([−p, 0];X) and

2ΘX,XLX,X(f)(1 + 2[ζ]CLip(1 + ΦX,W,X))

+2ΛX,WLX,W (g)(1 + 2 max
i=1,...,N

[σi]CLipΦX,W,X) < 1. (12)

Then there exists a unique mild solution u ∈ BPCLip(X) of the problem (17)-(18).

We also address the case in which the functions f(·), gi(·) are unbounded and (or) locally Lipschitz.
To begin, we include the next conditions.

HW
g,Z (Z, ‖ · ‖Z), (W, ‖ · ‖W ) are Banach spaces, (W, ‖ · ‖W ) ↪→ (Z, ‖ · ‖Z) ↪→ (X, ‖ · ‖), AT (·) ∈

L∞([0, a];L(W,Z)), each function gi is continuous from Z into W , takes bounded sets into
bounded sets and there is LZ,W (gi, ·) ∈ C(R;R) such that ‖ gi(x) − gi(y) ‖W≤ LZ,W (gi, r) ‖
x− y ‖Z for all x, y ∈ Br(0, Z) and every r > 0. Next, LZ,W (g, r) = maxi= ...,N LZ,W (gi, r) and
CZ,W (gi, r) =‖ gi ‖C(Br(0,Z);W ).

HV
f ,Z (Z, ‖ · ‖Z), (V, ‖ · ‖V ) are Banach spaces, f(·) is continuous from Z into V , takes bounded sets

into bounded sets and there is a function LZ,V (f, ·) ∈ C(R;R) such that ‖ f(x) − f(y) ‖V≤
LZ,V (f, r) ‖ x − y ‖Z for all x, y ∈ Br(0, Z) and every r > 0. Next, for r > 0 we use the
notation CZ,V (f, r) =‖ f ‖C([0,a]×Br(0,Z);V ).

Notations 2 If the above conditions are satisfied, for r > 0 we define ΦZ,W,V (r) by

ΦZ,W,V (r) =‖ T (·) ‖L∞(([0,b];L(Z,W )) CZ,W (g, r)+ ‖ T (·) ‖L∞([0,b];L(Z,V )) CZ,V (f, r)

+ ΘZ,VLZ,V (f, r) + [T (·)ϕ(0)]CLip([−p,0];Z) + [ϕ]CLip([−p,0];Z).
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Proposition 1 Let the conditions HX,ζ,σi, HW
g,X and HX

f ,X be holds. Suppose that T (·)ϕ(0) ∈
CLip([0, a];X) and there is r >‖ ϕ ‖C([−p,0];X) such that the inequality (12) is satisfied with LX,X(f, r),ΦX,W,X(r)

and LX,W (g, r) in place LX,X(f),ΦX,W,X and LX,W (g), and

C0 ‖ ϕ(0) ‖ + ‖ T (·) ‖L∞(([0,b];L(W,X) CX,W (g, r)+ ‖ T (·) ‖L1([0,b];L(X)) CX,X(f, r) < r.

Then there exists a unique mild solution u ∈ BPCLip(X) of (17)-(18).
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Abstract

We discuss the main properties, virtues as well as weaknesses, of the non-absolute integration

theory due to Jaroslav Kurzweil and Ralph Henstock which gives rise to the so-called generalized

Riemann integral.
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Abstract

In this talk we analyze nonlocal problems of the form

f(x) =

ˆ
B
J(x− y)(u(y)− u(x))dy

with x in a perforated domain Ωε ⊂ Ω. Here J is a non-singular kernel. We think about Ωε as a

fixed set Ω from where we have removed a subset that we call the holes. We deal both with the

Neumann and Dirichlet conditions in the holes and assume a Dirichlet condition outside Ω. In

the later case we impose that u vanishes in the holes but integrate in the whole RN (B = RN )

and in the former we just consider integrals in RN minus the holes (B = RN \(Ω\Ωε)). Assuming

weak convergence of the holes, specifically, under the assumption that the characteristic function

of Ωε has a weak limit, χε ⇀ X weakly∗ in L∞(Ω), we analyze the limit as ε→ 0 of the solutions

to the nonlocal problems proving that there is a nonlocal limit problem. In the case in which

the holes are periodically removed balls we obtain that the critical radius is of order of the size

of the typical cell (that gives the period). In addition, in this periodic case, we also study the

behavior of these nonlocal problems when we rescale the kernel in order to approximate local

PDE problems.
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Abstract

Modern structures are increasingly resistant and complex. In many cases, such systems are

modeled by numerical approximations methods, due to its complexities. The study of vibra-

tion levels in the response of a system is of great importance to have a reliable and efficient

design, since those vibrations are undesirable phenomena that may cause damage, failure, and

sometimes destruction of machines and structures. In this paper is investigated the modeling

strategy of nonlinear system with damping, subject the time delayed. Focuses on the theo-

retical study and numerical simulations of a two degree-of-freedom nonlinear damped system,

constituted of a primary mass attached to the ground by a spring and damping, with linear or

nonlinear characteristics (primary system) , and the secondary mass attached to the primary

system by a spring and damping with linear or nonlinear characteristics (Secondary system),

for the integration of equations of motion will be used Fourth Order Runge-Kutta Method. The

behavior of a nonlinear main system with nonlinear secondary system will be investigated to

many cases of resonances. In this case, we used are various delay time values for confirming its

influence of the attenuation of vibrations, but, unfortunately, also in increasing the nonlinearity

(instable responses) of the system in question.
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Abstract

To achieve information about the measure of the amount of solar radiation at the Martian

surface is useful to gain some insight into the following issues:

• UV irradiation levels at the bottom of the Martian atmosphere to use them as an habit-

ability index.

• Incoming shortwave radiation and solar heating at the surface.

• Relative local index of dust in the atmosphere.

The obtention of these data is affected by the different Martian atmospheric scenarios. In

particular, the dust aerosols have an important effect on the solar radiation in the Martian

atmosphere and both surface and atmospheric heating rates, which are also basic drivers of

atmospheric dynamics [1]-[3].

Aerosols cause an attenuation of the solar radiation traversing the atmosphere and this

attenuation is modeled by the Lambert-Beer-Bouguer law,

F (λ) = DF0(λ)e−τ(λ)m,
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where F0(λ) is the spectral irradiance at the top of the atmosphere, m is the absolute air mass,

D is the correction factor for the earth-sun distance, and τ(λ) is the total optical thickness at

wavelength λ, in which the aerosol optical thickness τa(λ) plays an important role. Through

Angstrom law, the aerosol optical thickness can be approximated as a second order moment,

τ−1
a (λ) =

λα

β
,

where, α, β are parameters related to the dust particles and the properties of the atmosphere,

and then this law allows to model attenuation of the solar radiation traversing the atmosphere

by a wavelength-fractional diffusion equation [4]-[7]:

∂αϕ

∂λα
=

Γ(α+ 1)

2β

∂2ϕ

∂x2
, 0 < α < 2.

The analytical solution of the fractional diffusion equation is available in the case of one

space dimension and three space dimensions with radial symmetry. When we extend the frac-

tional diffusion equation to the case of two or more space variables, we need large and massive

computations to approach the solutions through numerical schemes. In this case a suitable

strategy is to use the cloud computing to carry out the simulations.

In this study, we discuss some questions of the model and experimental data. We present

analytic solutions for this modeling problem in one and three space dimensions and numerical

methods that allow us to obtain computational simulations of the solutions. Also, the fractional

model provides information that can be understood in term of higher order moments and this

relation establishes a meeting point and discussion regarding to the experiments. In this context,

we are working in the fitting of the fractional model to dust observational data [8].
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Abstract

Let p : [t0,∞) → R and g : [t0,∞) → R. Consider the measure delay differential equation

with impulses  Dy = −p(t)y(t− τ)Dg

y(t+k )− y(tk) = bky(tk), k ∈ N,
(13)

in which g is a regulated function which is left-continuous and continuous at the points of im-

pulses tk, k ∈ N, Dy and Dg stand for the distributional

derivatives of the functions y and g in the sense of distributions of L. Schwartz and, more-

over,

• t0 < t1 < . . . < tk < . . . are fixed points and lim
k→∞

tk =∞;

• for k ∈ N, bk ∈ (−∞,−1) ∪ (−1,∞) are constants;

• for each compact subset [a, b] of [t0,∞) the Perron-Stieltjes integralˆ b

a
p(s)dg(s) exists.

The objective of this work is to present new criteria for the existence of oscillatory and

nonoscillatory solutions of equation (1).
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Abstract

This is a joint work with Prof Miguel V.S. Frasson, Prof Selma H.J. Nicola and Prof Plácido

Z. Táboas. Our object of study is an autonomous ODE submitted to an impulsive self-support

and occasionally to an initial condition,

ẋ = f(x), (14)

x(t) ∈M =⇒ x(t+) = F (x(t)), (15)

x(t0) = b. (16)

where x ∈ Rn, f ∈ C1, M ⊂ Rn is closed and F : M → Rn is continuous. We define a topological

approach by identifying a point x(t) ∈ M with F (x(t)), so that we eliminate the impulse at

x(t). This process in general leads a discontinuous semi-dynamical system to a continuous one

in a more complex topological space.
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Abstract

This is joint work with Fozi Dannan and Sabrina Streipert. In this talk, we discuss a certain

nonautonomous Beverton–Holt equation of higher order. After an introduction to the classical

Beverton–Holt equation and recent results, we solve the higher-order Beverton–Holt equation

by rewriting the recurrence relation as a difference system of order one. In this process, we

examine the existence and uniqueness of a periodic solution and its global attractivity. We

continue our analysis by studying the corresponding second Cushing–Henson conjecture, i.e.,

by relating the average of the unique periodic solution to the average of the carrying capacity.
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Abstract

Impulsive dynamical systems describes evolution of systems where the continuous devel-

opment of an evolution is interrupted by abrupt changes of state, which we call impulses (or

corrections). Such subject has been the research topic of many authors over the last five decades

and many real world problems can be defined in terms of impulsive systems; for instance, a sim-

ple medicine intake, which requires that a new dose must be taken in order to keep the disease

under control, and hence the concentration of the medicine suffers a sudden change.

In this talk I will present a brief history of this theory and many recent results regarding these

systems, for both the autonomous and nonautonomous cases. We will see the basic definitions,

important properties, results on the existence of ‘attractors’ and the relationship among them.

Moreover, I will present some of the difficulties encountered and some open problems.

This overview is a collection of results from several papers (see [1, 2, 3, 4, 5]) in collabo-

ration with Alexandre Carvalho (ICMC - USP), Everaldo Bonotto (ICMC - USP), Rados law

Czaja (University of Silesia, Katowice - Poland), Rodolfo Collegari (UFU) and Tomás Caraballo

(University of Seville, Spain).
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Abstract

This paper is concerned with the long-time dynamics of a semilinear wave equation with

degenerate viscoelasticity

utt −∆u+

ˆ t

−∞
g(t− s)div[a(x)∇u(s)]ds+ f(u) = h(x),

defined in a bounded domain Ω of R3, with Dirichlet boundary condition and nonlinear forcing

f(u) with critical growth. The problem is degenerate in the sense that the function a(x) ≥ 0

in the memory term is allowed to vanish in a part of Ω. When a(x) does not degenerate and

g decays exponentially it is well-known that the corresponding dynamical system has a global

attractor without any extra dissipation. In the present work we consider the degenerate case and

prove the existence of global attractors by adding a complementary frictional damping b(x)ut,

which is in certain sense arbitrarily small, such that a+ b > 0 in Ω.
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Abstract

In order to study Neutral Functional Differential Equations with infinite delay, we stablish a

equivalence of a class of these equations with a class of Generalised Ordinary Differential Equa-

tions. Results on existence, uniqueness of solutions and continuous dependence with respect to

initial conditions are obtained.
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Abstract

The aim of this lecture is to analyze the generalized Navier-Stokes equations with time

fractional differential operator:

cDα
t u− ν∆u+ (u · ∇)u+∇p = f in RN , t > 0,

∇ · u = 0 in RN , t > 0,

u(x, 0) = u0 in RN ,

where cDα
t is the Caputo fractional derivative of order α ∈ (0, 1) and f a suitable function. More

specifically, we address this matter using the theory of fractional abstract Cauchy problems,

proving that it possesses an unique global mild solution with certain interesting decay properties.

Then we discuss the integrability in time of this solution and show that it has a non expected

regularity. Finally, we use all the obtained information to guess some properties of the classical

solution.

This is a joint work with Prof. Gabriela Planas from UNICAMP.
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Abstract

This study describes the asymptotic quasi-steady régime attained by a rapidly rotating

vortex after a wave packet has interacted with it. We consider singular nonlinear helical and

shear modes within a linearly stable, columnar, axisymmetric, and dry vortex in the f-plane. The

presence of asymmetric disturbances inside a vortex is a possible intensification mechanism. The

normal modes enter resonance with the vortex at a certain radius rc, where the phase angular

speed is equal to the rotation frequency. The singularity in the modal equation at rc strongly

modifies the flow in the 3D helical critical layer, the region where the wave/vortex interaction

occurs. For a O(ε) small amplitude wave packet, this interaction induces a secondary mean

flow of O(ε1/2) amplitude that can be observed in tropical cyclones in the form of inner spiral

bands[2]. The outcome is that the wave/vortex interaction is all the stronger as the wave packet

is localized. For a O(ε1/2) packet vertical extent, the cat’s eye loses its symmetry with respect

to the radial axis owing to the presence of a O(ε) mean radial circulation. Matched asymptotic

analysis shows that two slow times are involved, and that neutral modes are distorted. We

derive the system of nonlinear coupled PDEs that governs the slowly evolving amplitudes of

the wavepacket and induced mean flow in the quasi-steady régime. The nonlinear terms of the

integro-differential evolution equation of the wave packet amplitude are related to the deformed

shape of the cat’s eye and to the distortion of the mean axial vorticity. This system leads to a

more complex dynamics with respect to the previous studies on wavepackets where the coupling

was omitted [1] and where a Korteveg-de-Vries equation was derived.
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Abstract

The Einstein constraint equations describe the space of initial data for the evolution equa-

tions, dictating how space should curve within spacetime. Under certain assumptions, the

constraints reduce to a scalar quasilinear parabolic equation on the sphere with various singu-

larities, and nonlinearity being the prescribed scalar curvature of space. We focus on self-similar

solutions of Schwarzschild type. Those describe, for example, the initial data of black holes.

In this case, we show that the event horizon is related with global attractors of such parabolic

equations. Lastly, some properties of those attractors and its solutions are explored.
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Abstract

We consider the initial and boundary value problem governed by the equation ut − ∆u =

f0(u) on a bounded domain Ω ⊂ R3 with the homogeneous Dirchlet conditions and cubic

nonlinearity f0. We compare the global attractor of the semiflow governed by the above equation

with uniform, pullback, and cocycle attractors of the process governed by its nonautonomous

perturbation εutt + ut − ∆u = fε(t, u), where the type of equation changes from parabolic to

hyperbolic. Under appropriate conditions on convergence of fε to f0 we prove that all three

types of nonautonomous attractors converge in the sense of Hausorff distance, both upper- and

lower-semicontinuously, to the global attractor for the unperturbed problem as ε → 0. The

problem has application in modelling of the heat processes with the Fourier law replaced by the

Maxwell-Cattaneo law. This is joint work with José A. Langa (Universidad de Sevilla, Spain)

and Mirelson M. Freitas (Universidade Federal do Pará, Brazil).
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Abstract

In this talk we are concerned with the long-time dynamics of a class of plate equations, with

nonlinear strain of p-Laplacian type,

utt +Au+Aαut − div(|∇u|p−2∇u) + f(u) = h(x),

with A = ∆2, α ∈ (0, 1
2), p ≥ 0, and defined in a bounded domain of R2. This kind of equation

was studied by many authors. However, without a strong damping term −∆ut, the uniqueness

of the problem is known only for some special cases. See for instance [2]. Then we study

this problem by using the theory of generalized semiflows [1], which is dedicated to evolution

problems with presumed non-uniqueness.
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Abstract

In this work we introduce the concept of collective tube conditions which assures a suitable

behavior for a family of dynamical systems close to impulsive sets. Using the collective tube

conditions, we develop the theory of upper semicontinuity of global attractors for a family of

impulsive dynamical systems.
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Abstract

The well posedness of abstract time evolution fractional integro–differential equation with

variable order u(t) = u0 + ∂−α(t)Au(t) + f(t), as well as the asymptotic behavior as t → +∞,

and the regularity of its solutions are studied. Here A plays the role of a linear operator of

sectorial type.
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Remark on autonomous generalized ordinary differential
equations

Rogélio Grau Acuña (rogeliograu@gmail.com)
Universidad del Norte Barranquilla-Colombia

Abstract

In this talk, we are going to present the autonomous generalized ODEs and show that these

equations do not enlarge the class of the classical autonomous ODEs, even when we consider a

more general class of functions in the right-hand sides of the equation.
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Contiguity of States and Super Wave Operators for Quantum
Markov Semigroups

Rolando Rebolledo (rolando.rebolledo@uv.cl)
CIMFAV-Facultad de Ingenieŕıa
Universidad de Valparáıso, Chile

Abstract

The qualitative analysis of Quantum Markov Semigroups (QMS) has been strongly influ-

enced by both, Quantum Mechanics as well as Semigroup Theory in Probability. For instance,

in my old paper [6] I analyzed a number of notions inspired by Scattering Theory, in particular,

the existence of the so-called wave operators. The key was an idea due to Lucien Le Cam, who

introduced in classical probability the notion of contiguity. He dedicated his life to develop

Mathematical Statistics at a very high level, including subtle results in Functional Analysis as

well. The conference is aimed at providing a panorama of recent results obtained by defining

a concept of contiguity of states on von Neumann’s algebras. As a result, one obtains a char-

acterization of a Super Wave Operator (SWO) for two given open quantum dynamics. These

results will be illustrated via quantum and classical examples of evolutions.
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Abstract

We study the problem
ut −∆u = |x|α|u|

4+2α
N−2

−εu in B1 × (0,∞)

u = 0 on ∂B1 × (0,∞)

u = u0 in B1 × {0},

(Pε)

where B1 is the unit ball in RN , N > 2, ε > 0 is an small parameter, and α > 0 is a real

number which is not an even integer. We show that if ε > 0 is small enough, then there exists

a sign-changing stationary solution ψε of (Pε) such that the solution of (Pε) with initial value

u0 = λψε blows up in finite time if |λ− 1| > 0 is sufficiently small.
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Stability for a Dynamic Equation in Time Scales

Samuel Castillo (scastill@ubiobio.cl)
Department of Mathematics
University of Bio-Bio
Concepcion, Chile
Partially supported by DIUBB 164408 3/R

Abstract

This talk is devoted to the stability of a second order dynamic equation in Time Scale (see

[4] for information) with delayed argument

x∆∆(t) + b(t)x∆(g(t)) + c(t)x(h(t)) = f(t), t ∈ T,

where T is a non upper bounded time scale and b, c, g, h : T → T are nonnegative functions

such that h(t), g(t) ≤ t. Particularly, we study common element between autonomous case [6],

non autonomous case [2, 3] and unification of discrete and continuous results [5]. We make

comparison with the linear version with the results given by [1, 7].
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Birkhäuser Basel, 2001.

[5] M. Bohner, M. Federson; J. Godoy-Mesquita. Continuous dependence for impulsive functional
dynamic equations involving variable time scales. Applied Mathematics and Computation. 221
(2013) 383–393

[6] K.L. Cooke; Z. Grossman. Discrete delay, distributed delay and stability switches. J. Math.
Anal. Appl. 86 (1982) 592–627.

[7] L. Erbe; A. Peterson; S. H. Saker, Oscillation criteria for second-order nonlinear delay dynamic
equations. J. Math. Anal. Appl. 333 no. 1 (2007) 505–522.

61



XI Congress GAFEVOL

Recent results on the stability of 2D-Navier-Stokes equations
with unbounded delay

Tomás Caraballo (caraball@us.es)
Universidad de Sevilla

Abstract

In this talk we exhibit different methods to analyze the asymptotic behavior of solutions to

a 2D-Navier-Stokes model when the external force contains hereditary characteristics (constant,

distributed or variable delay, memory, etc). First we recall some results on the existence and

uniqueness of solutions. Next, the existence of stationary solution is established by Lax-Milgram

theorem and Schauder fixed point theorem. Then the local stability analysis of stationary solu-

tion is studied by using the theory of Lyapunov functions, the Razumikhin-Lyapunov technique.

In the end, Lyapunov functionals is also exploited some stability results. We highlight the dif-

ferences in the asymptotic behavior in the particular case of bounded or unbounded variable

delay.
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Existence and uniqueness of solutions for second order
abstract impulsive differential equations with
state-dependent delay at the impulses
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Abstract

We consider a second order abstract differential equations with state-dependent delay at the

impulses of the form

u′′(t) = Au(t) + f(t, u(t), u′(t)), t ∈ [0, a], t 6= ti,

u0 = ϕ ∈ C([−p, 0];X),

u′(0+) = x ∈ X,

4u(ti) = Ji(u(σ(u(ti))),

where A is the generator of a strongly continuous cosine function of bounded linear operators

(C(t))t∈R on a Banach space (X, ‖ · ‖); 0 = t0 < t1 < ... < tN = a are pre-fixed numbers and

4u(ti) represents the jump of the function u at ti, which is defined by the function Ji : X → X;

f : [0, a] × X × X → X and σ : X → R are specified functions. We study existence and

uniqueness of solutions for this class of equations and present an example related to partial

differential equations with state dependent delay at the impulses.

References

[1] H. O. Fattorini. Second Order Linear Differential Equations in Banach Spaces. North-Holland
Mathematics Studies, Vol. 108, North-Holland, Amsterdam, 1985.

[2] F. Hartung, T. Krisztin, W. Hans-Otto, J. Wu. Functional differential equations with state-
dependent delays: theory and applications. Handbook of differential equations: ordinary differ-
ential equations. 3, 435-545, 2006.
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The Poisson Equation: Application to Physics

Daniel Borin (daneborin@hotmail.com)
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Abstract

The partial differential equations are of extreme importance in physics because they de-

scribe physical phenomena whose behaviour depends on the position, such as electrostatic,

electrodynamic, electromagnetism, fluid dynamics, heat diffusion, wave propagation, etc. These

equations are classified in hyperbolic, parabolic or elliptical.

The Poisson equation is an elliptical equation of partial derivatives in the form

∆u =
n∑
i=1

∂2u

∂x2
i

= f

where f : U ⊂ Rn 7→ R and ∆ denotes Laplace’s operator, with extensive utility in Electrostat-

ica, stationary models, such as heat equation, fluid dynamics, etc.

In this work we will show the proper importance of PDE’s and resolve the Poisson equation

by the method of separating variables in a physical application such as the tension function of

a bar or electric power.
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IDE: Optimization problems and population dynamics
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Partially supported by PIBIC

Abstract

In this paper, after an introduction to Impulsive Differential Equations (IDE), the article

“Optimization problems for one-impulsive models from population dynamics”, studied by the

end of the scientific initiation project, will be presented. This article introduces some opti-

mization results to be applied in population dynamics models involving first-order impulsive

differential equations.

The population dynamics models are represented by the ordinary equation

dN

dt
= f(t,N), (17)

where N = N(t) > 0 is the population size in time t ≥ 0 and f(t,N) is the total growth rate of

the population size. Besides that, in so many cases, f(t,N) = f(N), then we say that there is

a temporal constancy of the environment, and the ODE (17) is said to be homogeneous.

Depending on the choice of f and the characteristics of the environment and studied pop-

ulation, we obtain different different ODE models. On this paper, the Logistic and Gompertz

equations will be considered.

Our main objective is to construct an impulsive problem as follows:
η′(t) = f(t, η), t 6= τ, t ∈ [0, T ] ,

∆η(τ) = η(τ+)− η(τ−) = −I ,
η(0) = η0 ,

(18)

with I > 0 and impulse moment 0 < τ ≤ T .

From the considered hypotheses, we can guarantee that, for each t fixed in the given interval

[0, T ], exists an only value ψ(t) such that

f(t, ψ(t))− f(t, ψ(t)− I) = 0 .

Also, ψ is continuous in [0, T ] and ψ(t) ∈ (M(t),M(t) + I) for all t in this interval.
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Thus, if the solution N(t; 0, N0) of the PVI given by the equation (17) meets the function

ψ in the instant τ , then the solution of (18) satisfies f(τ, η(τ)) − f(τ, η(τ) − I) = 0, that is,

the growth rate doesn’t change in the impulse moment. This fact is very important to the

optimization results.

Another result says that the set of instants in which the solution of (17) meets the funcion

ψ consists of not more than one point. Therefore, the impulse moment in (18) will be choses as

the instant τ such that N(τ) = ψ(τ).

On the other hand, the main theorems present the optimization results. They guarantee

that the solution with impulse moment τ such that N(τ) = ψ(τ) assume bigger values in the

instant T than the solution of the same equation with any different impulse moment τ̂ 6= τ .

Consequently, applying the results to the population dynamic models, it’s possible to con-

struct impulsive problems with more satisfactory optimization results, so that an applied study

brings desired results.
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Expansão de autofunções para problemas de Sturm-Liouville
com condições de transmissão num ponto interior

Francisca das Chagas Alves Lemos (franciscalemos.mat@gmail.com)
Department of Mathematics
University of Braslia
Braslia, Brazil.

Abstract

O propsito do artigo que ser apresentado na modalidade exposio de pster extender algumas

propriedades do problema regular de Sturm-Liouville tipos especiais de problemas de fron-

teira descontnuas, os quais consiste da equao de Sturm-Liouville junto com condies de fronteira

eigenparameter-dependent e duas condies de transmisso suplementares. Ns construmos o oper-

ador resolvente e a funo de Green e provamos teoremas sobre expanso em termos de autofunes

em espaos de Hilbert L2 [a, b] modificado.

Investigamos algumas propriedades espectrais de um dos problemas de Sturm-Liouville de-

scontnuos para o qual o parmetro autovalor aparece tanto na equao diferencial quanto nas

condies de fronteira. Alm disso duas condies de transmisso suplementares no ponto interior so

adicionadas as condies de fronteira. Mais precisamente, iremos considerar a equao de Sturm-

Liouville

τu := −u′′(x) + q(x)u(x) = λu(x)

mantendo o invervalo finito (a, b) exceto num ponto interior c ∈ (a, b), onde a descontinuidade

em u e u′ so prescritas pelas condies de transmisso

γ1u(c− 0)− δ1u(c+ 0) = 0,

γ2u
′(c− 0)− δ2u

′(c+ 0) = 0,

junto com as condies de fronteira eigenparameter-dependent

α1u(a) + α2u
′(a) = 0,(

β′1λ+ β1

)
u(b)−

(
β′2λ+ β2

)
u′(b) = 0,

onde o potencial q(x) um valor real, contnuo em cada intervalo [a, c) e (c, b] e possui

limites finitos q(c∓0);αi, βi, β
′
i, δi, γi (i = 1, 2) so nmeros reais; λ um eigenparameter complexo.

Naturalmente, exclumos cada uma das condies triviais γ1 = δ1 = 0, γ2 = δ2 = 0, α1 = α2 = 0,

β′1 = β1 = β′2 = β2 = 0. Autofunes deste problema podem ter descontinuidades num ponto

interior do intervalo considerado. Este tipo de problema est relacionado com descontinuidades

de propriedades materiais, como calor, transferncia de massa, vrias classificaes de problemas de

transferncia fsicos, problemas de vibrao da corda onde a corda carregada adicionalmente com

pontos de massa e prolemas de difrao.
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Abstract

The ordinary differential equations are generally used in the modeling of problem envolving

population dynamics, where we assume the system is governed by the principle of causality.

But more realistic models should include some of the past state of this system. So the aim of

this work is to develop the basic theory about delay differential equations, present an aplication

using the Hutchinson’s equation

ẋ(t) = rx(t)[1− x(t− τ)/K], (19)

that can be rewritten as

ẏ(t) = −αy(t− 1)[1 + y(t)], (20)

and then show some of the differences between ordinary differential equations (ODEs) and

retarded functional differential equations (RFDEs) in population dynamics models.
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Abstract

In this work we consider α-resolvent families Sα(t), α > 0, t ≥ 0, studied by Bazhlekova [1],

and prove a zero-one law for this families.

Theorem 2 Let (Sα(t))t≥0 be a α-resolvent family generated by A. Suppose that

sup
t≥0
‖Sα(t)− I‖ =: θ < 1.

Then Sα(t) = I for all t ≥ 0.
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Abstract

In this work we will characterize the dual space of the continuous functions from [a, b] to

R, denoted by C([a, b]). For this purpose, we will use the Riesz’s Theorem and the space of

the normalized functions of bounded variation, NBV ([a, b]), that is a subspace of the functions

of bounded variation, BV ([a, b]). Finally, we will see that there is a homeomorphism between

(C([a, b]))′ and NBV ([a, b]).
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Henstock-Kurzweil Integral and the Kurzweil equations
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Abstract

In this work, we investigate the properties of the Henstock-Kurzweil integral and we present

a comparison between this integral and the classic Riemann integral. Also, we study the general-

ized ordinary differential equations (GODEs) and their properties. Finally, we present a relation

between the solutions of the GODEs and the solutions of the ordinary differential equations.
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Abstract

In this work we present the main theorems connecting the Lebesgue, Kurzweil-Henstock

and McShane integrals. It is shown that the complicated Lebesgue integral can be seen as a

particular case of the Kurzweil integral, which can be defined in a much simpler way. We also

show the equivalence between the Lebesgue integral and the McShane integral, which is a small

variation of the Kurzweil integral.
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Abstract

This talk shows the asymptotic behavior of resolvent operators of Sobolev type and its

applications to the existence and uniqueness of mild solutions to fractional functional evolution

equations of Sobolev type in Banach spaces. We first study the asymptotic decay of some

resolvent operators (also called solution operators) and next, by using fixed point theorems, we

obtain the existence and uniqueness of solutions to a class of Sobolev type fractional differential

equation.
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